Binomial Option Pricing Model

by / ⠀ / March 11, 2024

Definition

The Binomial Option Pricing Model is a risk-neutral model used to calculate the value of options, a type of financial derivative. It models an option’s value over a period of time by dividing it into multiple intervals or ‘steps’, and analyzing the possible future price movements. It is called ‘binomial’ because at every step, the option’s price can go one of two ways: up or down.

Key Takeaways

  1. The Binomial Option Pricing Model, also known as BOPM, is a method used in finance to calculate the value of options. This model uses a tree diagram to illustrate every possible path an option’s price can take during its lifetime and assumes the price can only move to two discrete states, up or down, which provides the binomial aspect.
  2. BOPM can adapt to more complex situations because unlike other models such as the Black-Scholes Model, it can incorporate various factors like dividends and interest rate changes. This adaptability allows it to account for American options that can be exercised at any time within the contract, as opposed to European options exercised only at the expiration date.
  3. While BOPM is beneficial for valuing American options, it can be computationally intensive if applied to options with a long time to expiration or those that are sensitive to shifts in volatility. Despite this, it provides a simplified means of understanding the fundamental pricing dynamics and risk-neutral valuation in the options market.

Importance

The Binomial Option Pricing Model (BOPM) is significant in finance due to its ability to calculate the fair price of options.

This model employs a risk-neutral framework that uses a tree of asset prices to predict price movements over time, allowing for more advanced stipulations such as American styled options.

Besides, it provides a computationally inexpensive way to price options compared to commonly used models such as the Black-Scholes model.

Its binomial tree of possible asset prices enables the user to handle a variety of complex conditions that may affect the price of an option, thus providing a more flexible and intuitive approach to options pricing.

Moreover, the BOPM increases in accuracy as more steps are used in the model, providing a more nuanced outlook on possible futures of a financial option.

Explanation

The Binomial Option Pricing Model (BOPM) is a valuable tool used in finance to calculate and assess the value of options, which are financial derivatives that grant the right, but not the obligation, to buy or sell an asset for a predetermined price before or on a specific date. The principal purpose of this model is to build a replicating portfolio that has the same payoffs as the option under study, enabling the application of risk-neutral valuation, which in turn infers the option’s fair price.

This is accomplished by constructing a binomial tree, a diagram representing different possible paths an asset’s price can take over the contract’s term, similar to a game of chance played over multiple periods. In regard to its uses, BOPM is advantageous in the computation of American options, which can be exercised before their expiry, where other models like the Black-Scholes-Merton model may not be as useful.

By giving the flexibility to ascertain the value of an option at different points in time, this model becomes valuable for pricing employee stock options or other exotic options, which may have unique features specific to individual contracts. Consequently, it becomes crucial for hedge funds, investment banks, and individual investors alike to aid in decision making about whether options should be exercised early and to foresee or manage financial risk.

Examples of Binomial Option Pricing Model

Stock Option Pricing: One of the most common applications of the Binomial Option Pricing Model is in the pricing of stock options. Suppose you are a trader who is considering purchasing an option on a particular stock. You would use the Binomial Option Pricing Model to calculate the fair price of the option based on the current price of the stock, the strike price of the option, the time to expiration, the risk-free rate, and the estimated volatility of the stock price.

Pricing European Options: It is also often used to price European options where the option can only be exercised at the time of expiration. Suppose, a European call option is written on a stock that is currently trading at $

Given certain parameters like the strike price, the time to expiration, the risk-free rate, and the volatility of the underlying stock, an investor can use the Binomial Option Pricing Model to calculate the fair price of the option.

Commodity Trading: The third real-world example is commodity trading. For instance, an oil company might use the Binomial Option Pricing Model to price an option to buy or sell a certain amount of oil at a future date. The model would take into account the current price of oil, the strike price of the option, the time to expiration, the risk-free rate, and the estimated volatility of the oil price.

FAQs for Binomial Option Pricing Model

What is the Binomial Option Pricing Model?

The Binomial Option Pricing Model is a risk-neutral method used for the valuation of options. The model was first proposed by Cox, Ross and Rubinstein in 1979. It is a simple model that uses a “discrete-time” framework which allows for possible paths that the price of the underlying asset can take.

What are the key components of the Binomial Option Pricing Model?

The Binomial Option Pricing Model consists of three key components – time periods, up and down movements, and risk-neutral probability. The time periods component refers to the time until the option expires. The up and down movements component refers to the two possible price movements for the underlying asset. The risk-neutral probability component refers to the probability of the price of the underlying asset increasing or decreasing.

Where is the Binomial Option Pricing Model applied?

The Binomial Option Pricing Model is often used in finance, particularly in pricing options in markets. Traders and investors use the model to evaluate and price options, including American options, which can be exercised any time up to the expiration date, and European options, which can only be exercised at expiration.

How does the Binomial Option Pricing Model work?

The Binomial Option Pricing Model works by building a binomial tree for the underlying asset price, the steps or “nodes” of which are based on the time to expiration of the option and the volatility of the underlying asset. Each node represents a possible price at the end of a time period. Starting at the final nodes, the option value is calculated backwards through the tree until reaching the present day.

What are the limitations of the Binomial Option Pricing Model?

The Binomial Option Pricing Model does have several limitations. It assumes that markets are efficient, interest rates are risk-free and constant, dividends are not paid out during the option’s life, and returns on the underlying asset are normally distributed. These assumptions may not always hold true in real-life scenarios. Further, it is also less accurate for options with long time to expiration or when the underlying security’s volatility is high.

Related Entrepreneurship Terms

  • Binomial Tree: A visual representation of possible future stock prices over the life of an option.
  • Risk-Neutral Valuation: An assumption that the expected return is equal to the risk-free rate.
  • Put Option: An option contract that gives the owner the right but not the obligation to sell a certain amount of an underlying security at a specified price before the option’s expiration date.
  • Call Option: An option contract that gives the owner the right, but not the obligation, to buy a certain amount of an underlying security at a specified price within a specified time frame.
  • Strike Price: The fixed price per share for which the underlying security may be purchased (in the case of a call) or sold (in the case of a put) by the option holder upon exercise of the option contract.

Sources for More Information

  • Investopedia: An extensive and reliable source for all things finance and investment related. The site provides a thorough explanation of the Binomial Option Pricing Model.
  • Corporate Finance Institute: A professional website that offers a rich library of resources on corporate finance subjects including the Binomial Option Pricing Model.
  • Finance Risk Study: A resourceful website which thoroughly covers various finance and risk management concepts and models such as the Binomial Option Pricing Model.
  • Khan Academy: Khan Academy offers free educational content on a vast variety of topics. Their finance and economics section includes information on the Binomial Option Pricing Model.

About The Author

Editorial Team

Led by editor-in-chief, Kimberly Zhang, our editorial staff works hard to make each piece of content is to the highest standards. Our rigorous editorial process includes editing for accuracy, recency, and clarity.

x

Get Funded Faster!

Proven Pitch Deck

Signup for our newsletter to get access to our proven pitch deck template.